Coactivation of putative octopamine- and serotonin-containing interneurons in the medicinal leech.
نویسندگان
چکیده
Possible interactions between octopamine-immunoreactive (IR) and serotonergic neurons in the CNS of the medicinal leech were investigated. Simultaneous intracellular recordings of serotonin-containing neurons (either the Retzius neuron or cell 21) and the dorsolateral octopamine-IR (DLO) neuron demonstrated that both sets of neurons are coactive at times. Depolarization of either serotonergic cell 21 or the Retzius neuron did not alter the membrane potential of the DLO. Similarly, depolarization of the DLO did not affect the serotonergic neurons examined. Because it was found that the DLO and either the serotonergic cell 21 or Retzius neuron were at times coactive, we looked for possible sources of common excitatory inputs. The centrally located pressure (P)- and touch (T)-sensitive mechanosensory neurons excited the DLOs through a polysynaptic pathway. Stimulation of nociceptive (N) mechanosensory neurons did not cause a measurable depolarization in the membrane potential of the DLO. Through simultaneous recordings of the DLO, cell 21, and a particular identified mechanosensory neuron, it was demonstrated that activity in the T or P cells can excite both serotonergic cell 21 and the octopamine-IR DLO. These findings indicate that, in many instances, both serotonin and octopamine, biogenic amines with neuromodulatory actions in many different invertebrates, may be released simultaneously in the leech.
منابع مشابه
Beyond the central pattern generator: amine modulation of decision-making neural pathways descending from the brain of the medicinal leech.
The biological mechanisms of behavioral selection, as it relates to locomotion, are far from understood, even in relatively simple invertebrate animals. In the medicinal leech, Hirudo medicinalis, the decision to swim is distributed across populations of swim-activating and swim-inactivating neurons descending from the subesophageal ganglion of the compound cephalic ganglion, i.e. the brain. In...
متن کاملModification of leech behavior patterns by reserpine-induced amine depletion.
A single injection of 100 micrograms reserpine into the crop of the medicinal leech, Hirudo medicinalis, reduced CNS serotonin and dopamine levels to less than 1% of control values within 3 d. High-pressure liquid chromotography- (HPLC) determined CNS serotonin and dopamine levels remained maximally depressed for approximately 1 month following reserpine injection. Subsequently, amine levels re...
متن کاملMixtures of octopamine and serotonin have nonadditive effects on the CNS of the medicinal leech.
It is well established that neural networks respond to a wide variety of modulatory substances by which they can become reconfigured, yet few studies have examined the effects of neurotransmitter mixtures on such networks. In a previous study of the medicinal leech using triple intracellular recordings, we found that stimulation of identified mechanosensory neurons activated both the serotonerg...
متن کاملPredation in two species of leech under laboratory conditions
Two 60 day experiments on predation behavior of leeches were conducted concurrently. In the first, medicinal leeches, Hirudo orientalis (Utevsky and Trontelj, 2005) were fed to satiation on bovine blood and subsequently transferred into two large opaque plastic containers of equal size but with differing temperatures, 6-7?C and 23-24?C, containing starved Erpobdella octoculata (L.). At the high...
متن کاملSerotonin and octopamine have opposite modulatory effects on the crayfish's lateral giant escape reaction.
Serotonin and octopamine have opposite effects on a simple behavioral response, the crayfish's lateral giant escape reaction. Specifically, serotonin depresses the lateral giants' responsiveness, whereas octopamine enhances it. Both effects are largely confined to the disynaptic pathway from the sensory afferents to the lateral giants, although, occasionally, small effects are also seen in the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 78 4 شماره
صفحات -
تاریخ انتشار 1997